
Advanced Python

• Lists, Dictionaries, Tuples

• Geometry objects

• Data Access

• Mapping Module

• Python Toolboxes

Key Python data structures

• Lists

- Flexible

- Ordered

• Tuples

- Immutable

- Ordered

• Dictionary

- Key/value pairs

Working with Lists

• Zero-indexed - first value is at location 0

a = [5, 3, 6, 9, 0, 30]

• a[2] → 6

• val1, val2, val3, val4 = a → 1, 2, 3, 4

• a[3:] [9,0,30]

• length: len(a) → 6

• a.append(4) → [5, 3, 6, 9, 0, 30, 4]

Working with Dictionaries

• employees = { 1000 : “John Smith”, 1001 : “Kevin

Jones”, 1002 : “Mary McMurray”}

• employees[1001] → “Kevin Jones”

• employees.keys → [1000, 1001, 1002]

• employees.values → [“John Smith”, “Kevin Jones”,

“Mary McMurray”]

• employees.items → a list of the items as a tuple

(similar to a list in a list)

List comprehension

• Compact way of mapping a list into another

Defining Functions

• Organize and re-use functionality

Define your
function

Return a
result

Call the
function

Geometry

Geometry and cursors

• Can create geometry in different ways

- Geometry objects

- List of coordinates

- Using other formats

- JSON, WKT, WKB

Geometry and cursors

• Can create geometry in different ways

- Geometry objects

- List of coordinates

- Using other formats

- JSON, WKT, WKB

Working with geometry

• Relational:

- Is a point within a polygon?

• Topological

- What is the intersection of two

geometries?

• Others (mid-point, geodesic area)

arcpy classes

arcpy classes

• Classes are used to create

objects

• Frequently used for…

- Tool parameters

- Working with geometry

arcpy Classes

• Most tool parameters are easily defined with a string or

number

• Some are not:

- Spatial reference

- Field map

• Classes can be used to define

these parameters

Using classes for parameters

• Extent

• SpatialReference

Cursors

Cursors

• Use cursors to access records and features

• Two varieties

- ‘Classic’ cursors

- ‘Data access’ cursors (10.1+)

SearchCursor Read-only

UpdateCursor Update or delete rows

InsertCursor Insert rows

Cursor mechanics

• Data access cursors use lists and tuples

- Values are accessed by index

• Classic cursors use row objects

- Values are accessed by setValue/getValue

With statements

• arcpy.da Cursors support with statements

Cursor performance

• Use only those fields you need

• Use tokens

- Get only what you need

- Full geometry is

expensive

Data Access

Exercise

arcpy.mapping

What is arcpy.mapping?

• A map scripting environment introduced at 10.0

• Python mapping module that is part of the ArcPy

site-package

What can you do with arcpy.mapping?

• Manage map documents, layer files, & their

contents

- Find a layer with data source X and replace with Y

- Update a layer’s symbology in many MXDs

- Generate reports that lists document information

- data sources, broken layers, spatial reference info, etc.

• Automate the exporting and printing of map

documents

• Automate map production and create map books

- Extend Data Driven Pages capabilities

Referencing Map Documents (MXDs)

• Opening Map Documents (MXD) with arcpy.mapping

• Use the arcpy.mapping.MapDocument function

• Takes a path to MXD file on disk or special keyword

"CURRENT“

• Reference map on disk
mxd = arcpy.mapping.MapDocument(r"C:\some.mxd")

• Get map from current ArcMap session
mxd = arcpy.mapping.MapDocument("CURRENT")

Referencing Map Documents (MXDs), cont.

• When using CURRENT

- Always run in foreground (checkbox in script tool

properties)

- Be wary of open conflicts, file contention

- May need to refresh the application

arcpy.RefreshActiveView()

• Limitations and pre-authoring

- No "New Map" function, so keep an empty MXD

available

- Can’t create new objects (e.g., north arrow, data

frame)

MapDocument Properties/Methods

• Save / saveAsCopy

• Author, descrition, dateSaved

• ReplaceWorkspaces

• dataDrivenPages

Map Layers and Data Frames

• The “List” functions

- ListLayers

- ListDataFrames

- Watch the list indexes (you may often forget to use [0])

df = arcpy.mapping.ListDataFrames(MXD)[0]

• Layer properties

- Common properties are available (e.g., def query,

visible)

- All properties can be updated via layer (.lyr) files

• DataFrame properties and methods

- Basic map navigation and settings

arcpy.mapping for the Page Layout

• When and what to pre-

author for layout

manipulation scenarios

- Name your layout elements

- Set the appropriate anchor

- Cannot add new elements,

 so pre-author and hide

arcpy.mapping for Printing and Exporting

• PDFDocument and

DataDrivenPages

classes

• Export and print

functions

• Map server publishing

• Map book generation

FUNCTIONS

ExportToAI

ExportToBMP

ExportToEMF

ExportToEPS

ExportToGIF

ExportToJPEG

ExportToPDF

ExportToPNG

ExportToSVG

ExportToTIFF

PDFDocumentCreate

PDFDocumentOpen

PrintMap

PublishMSDToServer

 ...

Updating Data Sources

• Use arcpy.mapping for migrating Map

Documents and Layer files to new data sources

• Fancier scripts can help mitigate migration pain:

SQL syntax changes, field name changes, etc

- “Updating and fixing data sources with arcpy.mapping”

- http://esriurl.com/4628

• Many capabilities:

- Update all layers in an MXD or specific tables and layers

- Works with all file and GDB types

- Update joins and relates

- Migrate from different workspace types

http://esriurl.com/4628

Python

Toolboxes

Python Toolboxes

• Everything is done in Python

- Easier to create

- Easier to maintain

• An ASCII file (.pyt) that defines a toolbox and tool(s)

• Tools look and behave like any other type of tool

Benefits

• All Python

• Frees you from Desktop

- Frees you from the Script tool wizard

• Can easily make changes and refresh

A tool does 3

types of work:

• Parameters

• Validation

• Source

Toolbox Structure

